Pharmacognosy Magazine
Search Article 
  
Advanced search 
   Journal of Cardiovascular Disease Research
 
 
 
Home  |  About us  |  Editorial board  |  Search  |  Ahead of print  |  Current Issue  |  Archives  |  Instructions  |  Subscribe  |  Contact us |    Login  Users online: 21
Home Print this page Email this page Small font sizeDefault font sizeIncrease font size
 


 
ORIGINAL PAPER
Year : 2010  |  Volume : 1  |  Issue : 2  |  Page : 86-91 Table of Contents     

Factor analysis of risk variables associated with metabolic syndrome in adult Asian Indians


1 Post Graduate Department of Anthropology, Sree Chaitanya College, Habra, West Bengal, India
2 Human Genetic Engineering Research Centre, Calcutta, India
3 Biomedical Research Laboratory, Department of Anthropology, Visva Bharati University, Santiniketan, West Bengal, India

Date of Web Publication18-Jun-2010

Correspondence Address:
Arnab Ghosh
Biomedical Research Laboratory, Department of Anthropology, Visva Bharati University, Santiniketan, West Bengal
India
Login to access the Email id

Crossref citations2
PMC citations3

DOI: 10.4103/0975-3583.64442

PMID: 20877692

Get Permissions

   Abstract 

Background: Several studies hinted about the clustering of risk variables of the metabolic syndrome (MS) and suggested that the underlying genetic polymorphisms could be responsible for the increasing incidence of coronary heart disease (CHD) in people of Indian origin. Therefore, identification of the components of the MS along with the genetic factors could be one of the aspects to make an attempt to prevent the increasing incidence of CHD. Materials and Methods: Principal component factor analysis (PCFA) was undertaken to identify the components or factors of the MS among the adult (≥30 years) Asian Indians living in and around Calcutta, India. The study comprised 350 adult Asian Indians. Anthropometric measurements were taken, and lipid profiles, blood pressure and fasting blood glucose were measured for each participant. Two genetic polymorphisms, namely, angiotensin converting enzyme (ACE) gene polymorphism (insertion/deletion [I/D]) or ACE (I/D) and apolipoproteinE (Hha I) were also studied. Results: PCFA revealed 3 factors that cumulatively explained 65.39% of the observed variance of the MS by measured variables. The 3 factors identified were lipids and lipoprotein (Factor 1), centripetal fat and blood pressure (Factor 2), and ACE (I/D) polymorphism with blood pressure (Factor 3). Moreover, the first 2 factors, that is, lipids, lipoprotein, centripetal fat, and blood pressures cumulatively explained ~46% (45.94%) of the observed variance of MS in this population. Conclusions: Since more than 1 factor was identified for the MS phenotype, more than 1 physiogenetic mechanism could be accounted for MS in the Asian Indian population.

Keywords: Asian Indians, factors, gene polymorphism, metabolic syndrome, obesity


How to cite this article:
Das M, Pal S, Ghosh A. Factor analysis of risk variables associated with metabolic syndrome in adult Asian Indians. J Cardiovasc Dis Res 2010;1:86-91

How to cite this URL:
Das M, Pal S, Ghosh A. Factor analysis of risk variables associated with metabolic syndrome in adult Asian Indians. J Cardiovasc Dis Res [serial online] 2010 [cited 2013 Apr 19];1:86-91. Available from: http://www.jcdronline.com/text.asp?2010/1/2/86/64442


   Introduction Top


The prevalence of coronary heart disease (CHD) is known to be very high among Indians, both in India and abroad. Moreover, among Indians, CHD occurs at least a decade or 2 earlier compared with Europeans. [1],[2] The reason for the increased susceptibility of Indians to CHD is yet to be completely understood. However, several studies have hinted that the clustering of risk variables (mechanism of which is still unknown) of metabolic syndrome (MS) could be responsible for the increasing incidence of CHD among Indians. This includes central obesity, hypertriglyceridemia, less levels of high-density lipoprotein cholesterol, high blood pressure, and high levels of fasting blood glucose, [1],[2],[3],[4] along with certain genetic factors (genetic polymorphisms) that adversely affect the levels of such variables, for example, angiotensin converting enzyme (ACE) gene polymorphism (insertion/deletion [I/D]) or ACE (I/D) and ApolipoproteinE gene (ApoE) polymorphisms. [5]

Throughout the Asia-Pacific region, there are differences in obesity prevalence as well as in body fat distribution [6] In Asian populations, morbidity and mortality from cardiovascular diseases (CVD) is occurring also in people with lower body mass index (BMI) and smaller waist circumference. [7,8] Thus, they tend to accumulate intra-abdominal visceral fat without developing generalized obesity. [1],[7],[8],[9] South Asians have a more centralized distribution of body fat and markedly higher mean waist-hip ratio for a given level of BMI compared with Europeans and Americans. [5],[6],[7],[8],[9] The MS, which can be defined as the constellation of CVD risk factors, is one of the growing public health burdens in the Asia-Pacific region, although people of this region are no more overweight than Europeans and Americans. [6],[9]

Several statistical techniques could be applied to identify the components of the MS. Principal component factor analysis (PCFA) is one such approach that groups quantitatively measured variables into clusters known as factors, on the basis of the correlation between variables. [10] PCFA was used to identify the domains of the risk variables of the MS. For example, if there is a single underlying cause for the clustering of the risk variables of the MS, then factor analysis should produce only 1 major factor or component. Therefore, identification of component(s) of the MS (considered to be the leading cause of CHD) is most essential for the etiology of CHD [7] However, a very few studies have so far been undertaken to identify the components of the MS in Asian Indian population [7],[8],[9],[11],[12],[13],[14],[15] These studies suggested that there existed no single or central etiological factor for the clustering of MS phenotypes. [7],[8] Therefore, it seems reasonable to argue that several underlying abnormalities do exist that might have relatively greater genetic basis. [7],[8]

However, to the best of the authors' knowledge, no study has been undertaken on Asian Indians incorporating the genetic polymorphism(s), lipids, blood glucose, blood pressure, and body fat patterns simultaneously to identify the components of MS in this ethnic group. Keeping this view in mind, the present investigation is an attempt to find out the physiogenetic factors responsible for the observed variation of MS in the Asian Indian population living in the eastern part of India.


   Materials and Methods Top


Study population

The present community-based cross-sectional study comprised adult (≥30 years) Asian Indians living in and around Calcutta, India. A total of 350 (male = 184 and female = 166) individuals participated in the study. Pregnant women, women undergoing hormone therapy, as well as individuals with known illnesses, such as ischemic heart disease, type 2 diabetes mellitus, and hypertension were not included in the study. Prior to participation, public advertisement was given about the study with the help of the local officials. Individuals who responded to the advertisement were selected randomly. It is noteworthy that only unrelated adults from a household were included as participants to avoid the effects of intra-household clusters of CVD risk factors. The Institutional Ethics Committee (IEC) of the "Human Genetic Engineering Research Center" (HGERC), Calcutta, India, has approved the study. Written consent from the participants was also obtained prior to the actual commencement of the study.

Anthropometric measurements

Anthropometric measurements, namely, height, weight, waist circumference, and subcutaneous skinfold were obtained using standard techniques. [16] Height and weight (in light clothing) were measured to the nearest 0.1 cm and 0.5 kg, respectively. Waist circumference (WC) was measured to the nearest 0.1 cm using an inelastic tape. The minimum WC was measured at the level of natural waist, which was the narrowest part of the torso. Subcutaneous skinfolds at biceps, triceps, suprailiac and subscapular sides were measured and the sum of the 4 skinfolds was computed subsequently.

Blood pressure

Left arm systolic and diastolic blood pressure measurements were taken twice using sphygmomanometer and stethoscope and were averaged for analyses. A third measurement was taken only when the difference between the 2 measurements was >5 mmHg. Previous medical records for blood pressure were also taken into consideration.

Metabolic profiles

A fasting blood sample (~7 mL) was collected from each subject for determining the metabolic profiles. All the subjects maintained an overnight fast of ≥12 h prior to blood collection. Estimation of total cholesterol (TC), triglycerides (TG), high-density lipoprotein (HDL), and fasting blood glucose was carried out on separated serum by means of a semi-auto analyzer. All biochemical analyses were estimated in mg/dL (mg%) unit.

Genotyping

Two genetic polymorphisms, namely, ACE (I/D) and ApoE (Hha I) polymorphisms were studied in 138 participants. To study ACE (I/D) and ApoE (Hha I) polymorphisms, DNA samples of participants belonging to the highest (90th) and lowest (10th) percentiles of blood pressure centiles (percentiles) and/or lipids were considered. The detailed procedures of genotyping have been mentioned elsewhere. [17],[18]

Statistical analyses

Descriptive statistics, such as mean and standard deviation (SD), of all the variables were calculated. Frequencies (%) of different alleles of ACE (I/D) and ApoE (HhaI) polymorphisms were also calculated. Factor analysis was undertaken to group quantitatively measured variables into clusters known as factors. It was done in 3 steps: computation of a correlation matrix for all variables included; factor extraction; and orthogonal rotation to make factors readily interpretable. The factors were extracted by PCFA in which the linear combinations of the variables were formed with the first component accounting for the largest amount of variance in the sample. Varimax rotation, an orthogonal rotation in which the factors are assumed to act independently (maximum likelihood), was used in the study. The components were all uncorrelated. Variables with a factor loading of at least 0.3 have generally been considered for interpretation, although it is suggested that only loading ≥0.4, which therefore shares at least 15% of the variance with a factor, should be used in the interpretation. [19] A factor loading of ≥0.4 was used to interpret the factors in the study. Previous studies have also used a factor loading of ≥0.4 to interpret the final rotated factor pattern. [7],[8],[19],[20],[21],[22],[23],[24]

All statistical analyses were performed using SPSS (PC+ version 10). A P value of < 0.05 (two-tailed) was considered as statistically significant.


   Results Top


The distribution of 184 males and 166 females by age groups and sex is presented in [Table 1]. It was observed that the participants were distributed more or less equally across the age groups and sex.

The mean and standard deviation (SD) of anthropometric, lipids profile, blood glucose, and blood pressure measures are presented in [Table 2]. The mean SD WC in the study population was 89.38 9.87. The mean (SD) triglyceride in the study was 141.95 (25.30). When the known South Asians' specific cutoffs were taken into consideration, the prevalence of MS in the study was 31.4%.

The frequency of ACE (I/D) and ApoE (Hha I) gene polymorphisms is presented in [Table 3]. The frequency (%) of Insertion/Insertion (I/I) polymorphism for ACE gene was found to be the highest (37%) in the study. On the other hand, epsillion 3/ epsillion 3 for ApoE gene (Hha I) was the most frequent (60.9%) in the study population.

The factor-loading pattern of the 3 factors (components) identified in the study is presented in [Table 4]. Only variables with loading ≥0.4 were considered for interpretation. The loading of individual risk variable varied from 0.413 to 0.915. The factor 1 (lipids, 25.53%); factor 2 (centripetal fat with blood pressure, 20.41%) and factor 3 (ACE gene along with blood pressure, 19.44%) cumulatively explained 65.39% of the total variation of MS in the study [Figure 1]. Most importantly, the first two factors (lipids, centripetal fat along with blood pressure) cumulatively explained ~46% (45.94%) of the total variation of MS in the study population.


   Discussion Top


The association of central obesity, glucose intolerance, hypertension, dyslipidemia, and hyperinsulinemia known as MS, has been observed in a number of ethnic groups worldwide. Studies across populations demonstrate that MS plays a pivotal role in the occurrence of CVD, including CHD. Therefore, identification of the components of the MS, including the genetic factors would be helpful in understanding the etiology of CHD. A very few studies have so far been undertaken to identify the underlying factors of MS in the Asian Indian population. [7],[8],[9],[11],[12],[13],[14],[15] However, virtually no study has been undertaken on Asian Indians incorporating the genetic polymorphism(s), lipids, blood glucose, blood pressure, and body fat patterns simultaneously to identify the components of MS in this ethnic group. The present investigation was aimed at identifying the physiogenetic factors responsible for the observed variation of MS in Asian Indian population living in the eastern part of India.

PCFA had identified 3 factors with 65.39% that explained variance of the MS among the adult Asian Indians of Calcutta. Neither of the variables loaded on all the 3 components. These 3 factors could be identified as lipid (factor 1), centripetal fat with blood pressure (factor 3), and ACE gene along with blood pressure (factor 3). The first 2 factors, that is, lipids, centripetal fat and blood pressure cumulatively explained ~47% of the total variance of the MS in the study population. Except diastolic blood pressure, no overlapping of variables on more than 1 factor indicated that more than 1 variable is responsible for the ultimate phenotype of the MS. The present factor analysis confirmed the general findings from other factor analyses of the MS on different ethnic groups that had 3-4 factors identified [Table 5].

The major limitation of this study is that it was performed on a relatively small sample size, and therefore is not representative of the Asian Indian population. Owing to considerable ethnic and cultural heterogeneity in the Asian Indian population, it is necessary to study other ethnic groups to see if the trends observed here also exist among them. However, it is noteworthy that results from different factor analysis are limited by differences in the ethnic group, sex, and age composition of the study samples, in the number of risk variables included, sample size, and cutoff points of loadings set by the investigators. [7] At the same time, to the best of our knowledge, no PCFA of MS has been undertaken so far, incorporating data on the angiotensin gene and the apolipoproteinE gene, along with the other confounding factors related to the MS in this part of the world. As Indian Diaspora offers a unique opportunity to study the "gene-environment" interaction involved in the etiology of CHD, further comparative studies between Indians living in India and Indians settled elsewhere could yield valuable information on the reasons behind the ethnic susceptibility to CHD among Indians. [7]

This model suggests that the clustering of the variables in MS is a result of multiple factors, including genetic polymorphisms with centripetal fat, lipids, and blood pressure playing key roles. Moreover, all the loaded risk variables, apart from the genetic polymorphism, are modifiable in nature. Therefore, it seems reasonable to argue that early prevention and proper intervention strategies to promote a healthy lifestyle could reduce the burden of MS in this part of the world.


   Acknowledgments Top


AG received financial support (Ref. No. 5/9/48/2006-RHN vide RFC No. RHN/Adhoc/1/2009-10) from the Indian Council of Medical Research (ICMR), Government of India, New Delhi. MD received partial funding [Ref. No. F.PSW-176/09-10(ERO)] from the University Grants Commission (UGC), Government of India, New Delhi. The authors are grateful to the staff and technicians of the HGERC, Calcutta, India, for their sincere help in analyzing the metabolic profiles and genotyping. The authors are also indebted to all the subjects participated in the study.[32]

 
   References Top

1.McKeigue PM, Shah B, Marmot MG. Relation of central obesity and insulin resistance with high diabetes prevalence and cardiovascular risk in South Asians. Lancet 1991;337:382-6.  Back to cited text no. 1  [PUBMED]  [FULLTEXT]  
2.Enas EA, Yusuf S, Mehta JL. Prevalence of coronary artery disease in Asian Indians. Am J Cardiol 1992;70:945-9.  Back to cited text no. 2      
3.Rajmohan L, Deepa R, Mohan V. Risk factors for coronary artery disease in Indians: emerging trends. Indian Heart J 2000;52:221-5.  Back to cited text no. 3  [PUBMED]    
4.Misra A, Vikram NK. Insulin resistance syndrome (metabolic syndrome) and obesity in Asian Indian: evidence and implication. Nutrition 2004;20:482-91.  Back to cited text no. 4  [PUBMED]  [FULLTEXT]  
5.Das M, Pal S, Ghosh A. Synergistic effects of ACE (I/D) and Apo E (HhaI) gene polymorphisms among the adult Asian Indians with and without metabolic syndrome. Diabetes Res Clin Pract 2009;86:e58-61.   Back to cited text no. 5  [PUBMED]  [FULLTEXT]  
6.WHO/IASO/IOTF. The Asia-Pacific Perspective: Redefining Obesity and its Treatment. Health Communication: Australia, 2000.  Back to cited text no. 6      
7.Ghosh A. Factor analysis of metabolic syndrome among the middle-aged Bengalee Hindu men of Calcutta, India. Diabetes Metab Res Rev 2005;21:58-64.  Back to cited text no. 7  [PUBMED]  [FULLTEXT]  
8.Ghosh A. Factor analysis of risk variables associated with metabolic syndrome in Asian Indian adolescents. Am J Hum Biol 2007;19:34-40.  Back to cited text no. 8  [PUBMED]  [FULLTEXT]  
9.Ghosh A. Comparison of risk variables associated with the metabolic syndrome in pre- and post menopausal Bengalee women. Cardiovasc J Afr 2008;19:183-7.  Back to cited text no. 9  [PUBMED]  [FULLTEXT]  
10.Stevens J. Applied Multivariate Statistics for the Social Sciences. Mahwah, NJ: Lawrence Erlbaum; 1996.  Back to cited text no. 10      
11.Ramachandran A, Snehalatha C, Satyavani K, Sivasankari S, Vijay V. Cosegregation of obesity with familial aggregation of type 2 diabetes mellitus. Diabetes Obes Metab 2000;2:149-54.  Back to cited text no. 11  [PUBMED]  [FULLTEXT]  
12.Snehalatha C, Sivasankari S, Satyavani K, Vijay V, Ramachandran A. Insulin resistance alone does not explain the clustering of cardiovascular risk factors in southern India. Diabet Med 2000;17:152-7.  Back to cited text no. 12  [PUBMED]  [FULLTEXT]  
13.Ramachandran A, Sathyamurthy I, Snehalatha C, Satyavani K, Sivasankari S, Misra J, et al. Risk variables for the coronary artery disease in Asian Indians. Am J Cardiol 2001;87:267-71.  Back to cited text no. 13  [PUBMED]  [FULLTEXT]  
14.Gupta R. Burden of coronary heart disease in India. Indian Heart J 2005;25:126-31.  Back to cited text no. 14      
15.Vikram NK, Misra A, Pandey RM, Luthra K, Wasir JS, Dhingra V. Heterogeneous phenotypes of insulin resistance and its implications for defining metabolic syndrome in Asian Indian adolescents. Atherosclerosis 2006;186:193-9.  Back to cited text no. 15  [PUBMED]  [FULLTEXT]  
16.Lohman TG, Roche AF, Martorell R, editors. Anthropometric standardization references manual. Chicago: Human Kinetics; 1988.  Back to cited text no. 16      
17.Das M, Pal S, Ghosh A. Angiotensin converting enzyme gene polymorphism (insertion/deletion) and hypertension in adult Asian Indians: a population- based study from Calcutta, India. Hum Biol 2008;80:303-12.  Back to cited text no. 17  [PUBMED]    
18.Das M, Pal S, Ghosh A. Apolipoprotein E gene polymorphism and dyslipidaemia in adult Asian Indians: a population based study from Calcutta, India. Indian J Hum Genet 2008;14:80-4.  Back to cited text no. 18      
19.Hodge AM, Boyko EJ, de Courten M, Zimmet PZ, Chitson P, Tuomilehto J, et al. Leptin and other components of the metabolic syndrome in Mauritius- a factor analysis. Int J Obes Relat Metab Disord 2001;25:126-31.  Back to cited text no. 19  [PUBMED]    
20.Kue Young T, Chateau D, Zhang M. Factor analysis of ethnic variation in the multiple metabolic (insulin resistance) syndromes in three Canadian populations. Am J Hum Biol 2002;14:649-58.  Back to cited text no. 20  [PUBMED]  [FULLTEXT]  
21.Meigs JB, D'Agostino RB Sr, Wilson PW, Cupples LA, Nathan DM, Singer DE. Risk variables clustering in the insulin resistance syndrome. The Framingham Offspring Study. Diabetes 1997;46:1594-600.  Back to cited text no. 21  [PUBMED]    
22.Gray RS, Fabsitz RR, Cowan LD, Lee ET, Howard BV, Savage PJ. Risk factor clustering in the insulin resistance syndrome. The Strong Heart Study. Am J Epidemiol 1998;148:869-78.  Back to cited text no. 22  [PUBMED]  [FULLTEXT]  
23.Edwards KL, Burchfiel CM, Sharp DS, Curb JD, Rodriguez BL, Fujimoto WY, et al. Factors of the insulin-resistance syndrome in non-diabetic and diabetic elderly Japanese-American men. Am J Epidemiol 1998;147:441-7.   Back to cited text no. 23  [PUBMED]  [FULLTEXT]  
24.Chen W, Srinivasan SR, Elkasabany A, Berenson GS. Cardiovascular risk factors clustering factors of insulin resistance syndrome (syndrome X) in a biracial (black and white) population of children, adolescent and young adults. Am J Epidemiol 1999;150:667-74.  Back to cited text no. 24  [PUBMED]  [FULLTEXT]  
25.Bhagat M, Mukherjee S, De P, Goswami R, Pal S, Das M, et al. Clustering of cardiometabolic risk factors in Asian Indian women: Santiniketan women study. Menopause 2010;17:359-64.  Back to cited text no. 25  [PUBMED]  [FULLTEXT]  
26.Oliveira A, Lopes C, Severo M, Rodrνguez-Artalejo F, Barros H. Body fat distribution and C-reactive protein: a principal component analysis. Nutr Metab Cardiovasc Dis 2010 In press.  Back to cited text no. 26      
27.Deshmukh-Taskar PR, O'Neil CE, Nicklas TA, Yang SJ, Liu Y, Gustat J, et al. Dietary patterns associated with metabolic syndrome, sociodemographic and lifestyle factors in young adults: the Bogalusa Heart Study. Public Health Nutr 2009;12:2493-503.  Back to cited text no. 27  [PUBMED]  [FULLTEXT]  
28.Wu CZ, Lin JD, Li JC, Hsiao FC, Hsieh CH, Kuo SW, et al. Factor analysis of metabolic syndrome using direct measurement of insulin resistance in Chinese with different degrees of glucose tolerance. Indian J Med Res 2008;127:336-43.  Back to cited text no. 28  [PUBMED]  [FULLTEXT]  
29.Harriss LR, English DR, Powles J, Giles GG, Tonkin AM, Hodge AM, et al. Dietary patterns and cardiovascular mortality in the Mediterranean Collaborative Cohort Study. Am J Clin Nutr 2007;86:221-9.  Back to cited text no. 29  [PUBMED]  [FULLTEXT]  
30.Hanley AJ, Festa A, D'Agostino RB Jr, Wagenknecht LE, Savage PJ, Tracy RP, et al. Metabolic and inflammation variable clusters and prediction of type 2 diabetes: factor analysis using directly measured insulin sensitivity. Diabetes 2004;53:1773-81.  Back to cited text no. 30  [PUBMED]  [FULLTEXT]  
31.Howard BV, Criqui MH, Curb JD, Rodabough R, Safford MM, Santoro N, et al. Risk factor clustering in the insulin resistance syndrome and its relationship to cardiovascular disease in postmenopausal white, black, Hispanic, and Asian/Pacific Islander women. Metabolism 2003;52:362-71.  Back to cited text no. 31  [PUBMED]  [FULLTEXT]  
32.Lehto S, Rönnemaa T, Pyörälä K, Laakso M. Cardiovascular risk factors clustering with endogenous hyperinsulinaemia predict death from coronary heart disease in patients with type II diabetes. Diabetologia 2000;43:148-55.  Back to cited text no. 32      


    Figures

  [Figure 1]
 
 
    Tables

  [Table 1], [Table 2], [Table 3], [Table 4], [Table 5]


This article has been cited by
1 The ACE insertion/deletion polymorphism and its association with metabolic syndrome.
Xi, B. and Ruiter, R. and Chen, J. and Pan, H. and Wang, Y. and Mi, J.
Metabolism. 2011;
[Pubmed]
2 Association of metabolic syndrome with obesity measures, metabolic profiles, and intake of dietary fatty acids in people of Asian Indian origin
Das, M. and Pal, S. and Arnab, G.
Journal of cardiovascular disease research. 2010; 1(3): 130
[Pubmed]



 

Top
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
  • Das M
  • Pal S
  • Ghosh A
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
    Introduction
    Materials and Me...
    Results
    Discussion
    Acknowledgments
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed1407    
    Printed98    
    Emailed0    
    PDF Downloaded415    
    Comments [Add]    
    Cited by others 2    

Recommend this journal